
Search Algorithms II

3

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 1

3 Search Algorithms II

3.1 Local search
• Hill-climbing
• Simulated annealing
• Genetic algorithms∗

3.2 Adversarial search
• minimax decisions
• α–β pruning
• Monte Carlo tree search

3.3 Online search+

3.4 Metaheuristic search∗

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 2

Local Search

Local search algorithms operate using a single current (rather than
multiple paths) and generally move only to neighbors of that node

Local search vs. global search
– global search, including informed or uninformed search, system-

atically explores paths from an initial state
– global search problems: observable, deterministic, known envi-

ronments
– local search uses very little memory and finds reasonable solu-

tions in larger or infinite (continuous) state spaces for which global
search is unsuitable

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 3

Local Search

Local search is useful for solving optimization problems

— the best estimate of “objective function”, e.g., reproductive
fitness in nature by Darwinian evolution

Local search algorithms
• Hill-climbing (greedy local search)
• Simulated annealing
• Genetic algorithms

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 4

Hill-climbing

Useful to consider state space landscape, gradient descent

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

Random-restart hill climbing overcomes local maxima— trivially com-
plete (with probability approaching 1)
Random sideways moves: escape from shoulders, but loop on flat
maxima

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 5

Hill-climbing

Like climbing a hill with amnesia (or gradient ascent/descent)

def Hill-Climbing(problem)

current← problem.Initial

while true do

neighbor← a highest-valued successor of current

if Value(neighbor)≤ Value(current) then return current // a local max

current← neighbor

return a state that is a local maximum

The algorithm halts if it reaches a plateau where the best successor
has the same value as the current state

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 6

Simulated annealing

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

def Simulated-Annealing(problem, schedule)

current← problem.Initial

for t=1 to ∞ do

T← schedule[t]

if T=0 then return current

next← a randomly selected successor of current

∆E←Value(next) – Value(current)

if ∆E > 0 then current← next

else current← next only with probability e∆E/T

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 7

Properties of simulated annealing#

At fixed “temperature” T , state occupation probability reaches
Boltzman distribution (see later in probabilistic distribution)

p(x) = αe
E(x)
kT

T decreased slowly enough =⇒ always reach best state x∗

because e
E(x∗)
kT /e

E(x)
kT = e

E(x∗)−E(x)
kT ≫ 1 for small T

find a global optimum with probability approaching 1

Devised (Metropolis et al., 1953) for physical process modeling

Simulated annealing is a field in itself, widely used in VLSI layout,
airline scheduling, etc.

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 8

Local beam search

Beam search by local search to choose top k of all their successors

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly (stochastic beam search), biased
towards good ones

Observe the close analogy to natural selection

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 9

Genetic algorithms∗

GA= stochastic local beam search + generate successors from pairs

of states

32252124

Selection Cross−Over Mutation

24748552

32752411

24415124

24

23

20

32543213 11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24752411

32748152

24415417

Fitness Pairs

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 10

Genetic algorithms

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

+ =

GAs 6= evolution: e.g., real genes encode replication machinery

A.k.a, evolutionary algorithms

Genetic programming (GP) is closely related to GAs

Artificial Life (AL) moves one step further

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 11

Local search in continuous state spaces∗

Suppose we want to site three airports in Romania
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f (x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to the nearest airport
Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers ±δ change in each coordinate
Gradient methods compute

∇f =









∂f

∂x1
,
∂f

∂y1
,
∂f

∂x2
,
∂f

∂y2
,
∂f

∂x3
,
∂f

∂y3









to increase/reduce f , e.g., by x← x + α∇f (x)
Sometimes can solve for ∇f (x) = 0 exactly (e.g., with one city).
Newton–Raphson (1664, 1690) iterates x← x−H−1f (x)∇f (x)
to solve ∇f (x) = 0, where Hij = ∂2f/∂xi∂xj

Hint: Newton-Raphson method is an efficient local search

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 12

Adversarial search

• Games

• Perfect play
– minimax decisions
– α–β pruning

• Imperfect play
– Monte Carlo tree search

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 13

Games

Game as adversarial search

“Unpredictable” opponent ⇒ solution is a strategy
specifying a move for every possible opponent reply

Time limits ⇒ unlikely to find goal must approximate
Plan of attack

• Computer considers possible lines of play (Babbage, 1846)
• Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

• Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;
Shannon, 1950)

• First chess program (Turing, 1951)

•Machine learning to improve evaluation accuracy (Samuel, 1952–
57)

• Pruning to allow deeper search (McCarthy, 1956)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 14

Types of games#

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

backgammon
monopoly

bridge, poker, scrabble
nuclear war

Computer game
Single game playing: a program to play one game
General Game Playing (GGP): program to play more than one

game

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 15

Perfect play

Perfect information: deterministic to each player, zero-sum games

Games of chess
Checkers → Othello → Chess(/Chinese Chess/Shogi) → Go

Zermelo theorem: if the game cannot end in a draw, then one of
the two players must have a winning strategy (i.e. force a win)

Search state spaces are vast for Go/Chess
– each state is a point of decision-making to move

Go: Legal position (Tromp and Farnebäck 2007)
3361 (empty/black/white, 19× 19 board), about 1.2% legal rate
3361 × 0.01196 · · · = 2.08168199382 · · · × 10170

– the observable universe contains around 1080 atoms

Possible to reduce the space as small enough as likely exhaustively search??

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 16

Game tree (2-player, tic-tac-toe)

XX

XX

X

X

X

XX

MAX (X)

MIN (O)

X X

O

O

OX O

O

O O

O OO

MAX (X)

X OX OX O X

X X

X

X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL

XX

−1 0 +1Utility

Small state space ⇒ First win (cf. Zermelo theorem)
Go: a high branching factor (b ≈ 250), deep (d ≈ 150) tree

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 17

Minimax

Perfect play for deterministic, perfect-information games
Idea: choose move to position with the best minimax value

= best achievable payoff, computing by the utility
(assuming that both players play optimally to the end of the game,
the minimax value of a terminal state is just its utility)
E.g., a 2-ply game

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3

a1
a2

a3

b1

b2

b3 c1

c2

c3 d1

d2

d3

MIN

MAX – the highest minimax; MIN – the lowest minimax

argmaxa∈Sf (a): computes the element a of set S that has the
maximum value of f (a) (argmina∈Sf (a) for the minimum)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 18

Minimax algorithm

def Minimax-Search(game,state)

player← game.To-Move(state) //The player’s turn is to move

value,move←Max-Value(game,state)

return move //an action

def Max-Value(game,state)

if game.Is-Terminal(state) then return game.Utility(state,palyer),null

// a utility function defines the final numeric value to player

v←−∞
for each a in game.Actions(state) do

v2,a2←Min-Value(game,game.Result(state,a))

if v2 > v then

v,move← v2,a

return v,move //a (utility,move) pair

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 19

Minimax algorithm

def Min-Value(game,state)

if game.Is-Terminal(state) then return game.Utility(state,palyer),null

v←+∞
for each a in game.Actions(state) do

v2,a2←Max-Value(game,game.Result(state,a))

if v2 < v then

v,move← v2,a

return v,move

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 20

Properties of minimax#

Complete??

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 21

Properties of minimax#

Complete?? Only if a tree is finite (chess has specific rules for this)
(A finite strategy can exist even in an infinite tree)

Optimal??

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 22

Properties of minimax#

Complete?? Yes, if a tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent

Time complexity??

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 23

Properties of minimax#

Complete?? Yes, if a tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity??

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 24

Properties of minimax#

Complete?? Yes, if a tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity?? O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
⇒ exhaustive search is infeasible

For Go, b ≈ 250, m ≈ 150

But do we need to explore every path?

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 25

α–β pruning

..

..

..

MAX

MIN

MAX

MIN V

α is the best value (to max) found so far off the current path

If V is worse than α, max will avoid it ⇒ prune that branch

Define β similarly for min

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 26

Example: α–β pruning

MAX

3 12 8

MIN 3

3

The first leaf below MIN node has a value at most 3

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 27

Example: α–β pruning

MAX

3 12 8

MIN 3

2

2

X X

3

The second leaf has a value of 12, MIN would avoid, and so is still
at most 3

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 28

Example: α–β pruning

MAX

3 12 8

MIN 3

2

2

X X
14

14

3

The third leaf has a value of 8, the value of MIN is exactly 3 with all
the successor states

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 29

Example: α–β pruning

MAX

3 12 8

MIN 3

2

2

X X
14

14

5

5

3

The first leaf below the second MIN node has a value at most 2, but
the first MIN node is worth 3, so MAX would never choose it and
look at other successor states

— pruning

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 30

Example: α–β pruning

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

— pruning

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 31

The α–β algorithm#

def Alpha-Beta-Pruning(game,state)

player← game.To-Move(state)

value,move←Max-Value(game,state,−∞,+∞)

return move

def Max-Value(game,state,α,β)

if game.Is-Terminal(state) then return game.Utility(state,palyer),null

v←−∞
for each a in game.Actions(state) do

v2,a2←Min-Value(game,game.Result(state,a),α,β)

if v2 > v then

v,move← v2,a

β←Max(α,v)

if v ≥ β then return v,move

return v,move

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 32

The α–β algorithm

def Min-Value(game,state,α,β)

if game.Is-Terminal(state) then return game.Utility(state,palyer),null

v←+∞
for each a in game.Actions(state) do

v2,a2←Max-Value(game,game.Result(state,a),α,β)

if v2 < v then

v,move← v2,a

α←Max(β,v)

if v ≤ α then return v,move

return v,move

Note: The same as the Minimax-Search except for α, β to prune

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 33

Properties of α–β

Pruning does not affect the final result

Good move ordering improves the effectiveness of pruning

With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles solvable depth

A simple example of the value of reasoning about which computations
are relevant (a form of metareasoning)

Unfortunately, 3550 is still impossible (for chess)

Depth-first minimax search with α-β pruning achieved super-human
performance in chess, checkers and othello, but not effective in Go

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 34

Imperfect play

Resource limits
– deterministic game may have imperfect information in real-time

• Use Cutoff-Test instead of Is-Terminal
e.g., depth limit

• Use Eval instead of Utility
i.e., eval. function that estimates the desirability of the

position

Suppose we have 100 seconds, explore 104 nodes/second
⇒ 106 nodes per move ≈ 358/2

⇒ α–β reaches depth 8 ⇒ pretty good chess program

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 35

Evaluation functions

Black to move

White slightly better

White to move

Black winning

For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 36

Evaluation functions

For Go, the simply linear weighted sum of features

EvalFn(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

e.g., for some state s, w1 = 9 with
f1(s) = (number of Black good) – (number of White good), etc.

Evaluation functions need human knowledge and are hard to design

Go lacks any known reliable heuristic function
– difficulty than (Chinese) Chess

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 37

Deterministic (perfect information) games in practice

Checkers: Chinook ended the 40-year-reign of human world champion
Marion Tinsley in 1994. Used an endgame database defining perfect
play for all positions involving 8 or fewer pieces on the board, a total
of 443,748,401,247 positions

Othello: human champions refuse to compete against computers,
who are too good

Chess: IBM Deep Blue defeated human world champion Gary Kas-
parov in 1997. Deep Blue uses very sophisticated evaluation and
undisclosed methods for extending some lines of search up to 40 ply

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 38

Deterministic games in practice

AlphaGo
– Defeated human world champion in 2016 and in 2017
– AlphaGo Zero defeated AlphaGo in 2017
– AlphaZero: a GGP program, achieved within 24h a superhuman

level of play in the games of Chess/Shogi/Go (defeated AlphaGo
Zero) in Dec. 2017

MuZero: extension of AlphaZero including Atari in 2019
– outperform AlphaZero
– without any knowledge of the game rules

Achievements:
• “the God of the chess” of superhuman
• self-learning without prior human knowledge

Chinese Chess: the algorithm of AlphaZero/MuZero can be directly
used for Chess and similar deterministic games
Almost all deterministic games have been well defeated by AI

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 39

Nondeterministic games: backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 40

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 41

Algorithm for nondeterministic games

Expectiminimax gives perfect play

Just like Minimax, except we must also handle chance nodes

. . .
if state is a Max node then

return the highest ExpectiMinimax-Value of Suc-
cessors(state)
if state is a Min node then

return the lowest ExpectiMinimax-Value of Succes-
sors(state)
if state is a chance node then

return average of ExpectiMinimax-Value of Succes-
sors(state)
. . .

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 42

Nondeterministic (perfect information) games in practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20× (21× 20)3 ≈ 1.2× 109

As depth increases, the probability of reaching a given node shrinks
⇒ value of lookahead is diminished

α–β pruning is much less effective

TDGammon uses depth-2 search + very good Eval
≈ world-champion level

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 43

Games of imperfect information

E.g., card games, where the opponent’s initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game

Idea: compute the minimax value of each action in each deal, then
choose the action with the highest expected value over all deals

Special case: if action is optimal for all deals, it’s optimal

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 44

Monte Carlo tree search

MCTS
– a heuristic, expanding the tree based on a random sampling of

the state space
– like as depth-limited minimax (with α-β pruning)
– interest due to its success in computer Go since 2006
(Kocsis L et al. UCT, Gelly S et al. MoGo, tech. rep., Coulom

R coining term MCTS, 2006)

Motivation: evaluation function ⇐ stochastic simulation

A simulation (playout or rollout) chooses moves first for one player,
then for the other, repeating until a terminal position is reached

Note: Named after the Casino de Monte-Carlo in Monaco

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 45

MCTS

After 100 iterations (a) select moves for 27 wins for blackout of 35
playouts; (b) expand the selected node and do a playout ended in a
win for black; (c) the results of the playout are back-propagated up
the tree (incremented 1)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 46

MCTS

a. Selection: starting at the root, a child is recursively selected to
descend through the tree until the most expandable node is reached
b1. Expansion: one (or more) child nodes are added to expand the
tree, according to the available actions
b2. Simulation: a simulation is run from the new node(s) according
to the default policy to produce an outcome (random playout)
c. Backpropagation: the simulation result is “backed up” through
the selected nodes to update their statistics

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 47

MCTS policy

• Tree Policy: selects a leaf node from the nodes already contained
within the search tree (selection and expansion)

– focuses on the important parts of the tree, attempting to
balance

– – exploration: looking in states that have not been well
sampled yet (that have had few playouts)

– – exploitation: looking in states which appear to be promising
(that have done well in past playouts)

• Default (Value) Policy: play out the domain from a given non-
terminal state to produce a value estimate (simulation and eval-
uation) — actions chosen after the tree policy steps have been
completed

– in the simplest case, to make uniform random moves
– values of intermediate states don’t have to be evaluated, as

for depth-limited minimax

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 48

Exploitation-exploration

Exploitation-exploration dilemma
– one needs to balance the exploitation of the action currently

believed to be optimal with the exploration of other actions that
currently appear suboptimal but may turn out to be superior in the
long run

There are several variations of tree policy, says UCT (see the next
page),

Theorem: UCT allows MCTS to converge to the minimax tree and is
thus optimal, given enough time (and memory)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 49

Upper confidence bounds for trees#

UCT: say tree policy UCB1 — an upper confidence bound formula
for ranking each possible move

UCB1(n) =
U(n)

N(n)
+ C ×

√

√

√

√

√

√

√

logN (PARENT(n))

N(n)

U(n) — the total utility of all playouts through node n
N(n) — the number of playouts through n
PARENT(n) — the parent node of n in the tree

Exploitation U(n)
N(n): the average utility of n

Exploration
√

√

√

√

logN(PARENT(n))
N(n) : the playouts are given to the node

with highest average utility
C (
√
2) — a constant that balances exploitation and exploration

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 50

MCTS algorithm

def MCTS(state)

tree←Note(state)

while Is-Time-Remaining() do // within computational budget

leaf←Select(tree) // say UCB1

child←Expand(leaf)

result←Simulate(child) // self-play

Back-Propagate(result, child)

return the move in Action(state) whose node has highest number of playouts

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 51

Properties of MCTS#

• Aheuristic: don’t need domain-specific knowledge (heuristic), ap-
plicable to any domain modeled by a tree

• Anytime: all values up-to-date by backed up immediately allow to
return an action from the root at any moment in time

• Asymmetric: The selection allows to favor of more promising nodes
(without allowing the selection probability of the other nodes to con-
verge to zero), leading to an asymmetric tree over time

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 52

Example: Alpha0+

Go
– MCTS had a dramatic effect on narrowing this gap but is com-

petitive only on small boards (say, 9 × 9), or weak amateur level
players on the standard 19 × 19 board

– Pachi: open-source Go program, using MCTS, ranked at ama-
teur 2 dan on KGS, that executes 100,000 simulations per move

Ref. Rimmel. A et al., Current Frontiers in Computer Go, IEEE
Trans. Comp. Intell. AI Games, vol. 2, no. 4, 2010

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 53

Example: Alpha0

Alpha0 algorithm design
1. combine deep learning in an MCTS algorithm

– a single DNN (deep neural network) for both
police for breadth pruning, and
value for depth pruning

2. in each position, an MCTS search is executed guided by the DNN
with data by self-play reinforcement learning
without human knowledge w/o the game rules (prior know.)

3. asynchronous multi-threaded search that executes simulations
on CPUs, and computes DNN in parallel on GPUs

Motivation: evaluation function ⇐ stochastic simulation ⇐ deep

learning

(see later in machine learning)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 54

Example: Alpha0

Implementation

Raw board representation: 19× 19× 17
historic position st = [Xt, Yt, Xt−1, Yt−1, · · · , Xt−7, Yt−7, C]

Reading Silver D, et. al., Mastering the game of Go without human

knowledge, Nature 550, 354-359, 2017; or
(Silver, D, et. al., A general reinforcement learning algorithm that

masters chess, shogi, and Go through self-play, Science 07 Dec 2018:
Vol. 362, Issue 6419, pp. 1140-1144
Schrittwieser J et al., Mastering atari, go, chess and shogi by planning
with a learned model, Nature 588, 604-612, 2020)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 55

Alpha0 algorithm: MCTS+

Improvement MCTS: using a DNN and self-play

a. Selecting s with maximum value Q = 1
N(s,a)

∑

s′|s,a→s′ V (s′) + an

upper confidence bound U ∝ P (s,a)
1+N(s,a) (stored prior probability P and

visit count N)
(each simulation traverses the tree; don’t need rollout)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 56

Alpha0 algorithm: MCTS+

Improvement MCTS: using a DNN and self-play

b. Expanding leaf and evaluating s by DNN (P (s, ·), V (s)) = fθ(s)
c. Updating Q to track all V in the subtree
d. Once completed, search probabilities π ∝ N(s, a)1/τ are returned
(τ is a hyperparameter)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 57

Alpha0 pseudocode+

def Alpha0(state)

inputs: rules, the game rules // maybe omit

scores, the game scores

board, the board representation

// historical data and color for players

create root node with state s0, initially random play

while within computational budget do

αθ←Mcts(s(fθ))

a←Move(s, αθ)

return a(BestMove(αθ))

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 58

Alpha0 pseudocode

def Mcts(state, fθ)

inputs: tree, the search tree /*First In Last Out*/

P(s , a): prior probability, each edge (s , a) in tree

N (s , a): visit count

Q(s , a): action value

while within computational budget do

fθ←Dnn(st,πt,zt)

(P(s′, ·), V (s′))← fθ
U(s, a)←Policy(P(s′, ·),s0)
Q(s, a)←Value(V(s′),s0)
s′←Max(U (s , a) +Q(s , a))

Backup(s′,Q)

return αθ(BestChild(s0))

Some source codes can be found on Github, say LeelaZero

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 59

Complexity of Alpha0 algorithm+

Go/Chess are NP-hard (“almost” in PSPACE) problems

Alpha0 does not reduce the complexity of Go/Chess, but
– outperforms humans in the complexity
– – practical approach to handle NP-hard problems
– obeys the complexity of MCTS and machine learning
– – performance improvements from deep learning

by bigdata and computational power

Alpha0 toward N-steps optimization??
– if so, a draw on Alpha0 vs. Alpha0 for Go/Chess

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 60

Alpha0 vs. deep blue#

Alpha0Go/Chess exceeded the performance of all other Go/Chess
programs, demonstrating that DNN provides a viable alternative to
Monte Carlo simulation

Evaluated thousands of times fewer positions than Deep Blue did in
match

– while Deep Blue relied on a handcrafted evaluation function,
Alpha0’s neural network is trained purely through self-play reinforce-
ment learning

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 61

Example: Card∗

Four-card bridge/whist/hearts hand, Max to play first

8

9 2

66 6 8 7 6 6 7 6 6 7 6 6 7 6 7

4 2 9 3 4 2 9 3 4 2 3 4 3 4 3
0

6

4

8

9 2

6 6 8 7 6 6 7 6 6 7 6 6 7 7

2 9 3 2 9 3 2 3 3 3
0

4444

6

6

4

8

9 2

6 6 8 7 6 6 7 6 6 7

2 9 3 2 9 3 2 3

7

3

6

4
6 6 7

3444
6

6

7

34

−0.5

−0.5

MAX

MIN

MAX

MIN

MAX

MIN

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 62

Imperfect information games in practice

Poker: surpass human experts in the game of heads-up no-limit Texas
hold’em, which has over 10160 decision points

– DeepStack: beat top poker pros in limit Texas hold’em in 2008,
and defeated a collection of poker pros in heads-up no-limit in 2016

– Libratus/Pluribus: two-time champion of the Annual Com-
puter Poker Competition in heads-up no-limit, defeated a team of
top heads-up no-limit specialist pros in 2017

– ReBel: achieved superhuman performance in heads-up no-limit
in 2020, extended AlphaZero to imperfect information game by Nash
equilibrium (with knowledge)

Bridge: more difficult than Poker
– NooK (startup NukkAI) won 67 or 83% of the 80 sets with 8

world champions (no deception) in 2022
a hybrid of rules-based and deep learning systems (“white box”

or “neurosymbolic”, explainability)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 63

Imperfect information games in practice

StarCraft II (real-time strategy games): Deep Mind AlphaStar 5-0
defeated a top professional player in 2018

Mahjong: Suphx (Japanese Mahjong) – rated above 99.99% of top
human players in the Tenhou platform in 2020

Stratego: the game tree on the order of 10535 nodes (10175 times
larger than that of Go)
DeepNash got up to a human expert level from scratch in 2022

Imperfect information games involve obstacles not present in classic
board games like go, but

which are present in many real-world applications, such as nego-
tiation, auctions, security, weather prediction and climate modeling
etc.

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 64

Online search+

Offline search algorithms compute a complete solution before exec.
vs.

online search ones interleave computation and action (processing in-
put data as they are received)

– necessary for unknown environment
(dynamic or semidynamic, and nonderterministic domains)
⇐ exploration problem

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 65

Example: maze problem

An online search agent solves problems by executing actions, rather
than by pure computation (offline)

G

S1

2

3

1 2 3

The competitive ratio – the total cost of the path that the agent
actually travels (online cost) / that the agent would follow if it knew
the search space in advance (offline cost) ⇐ as small as possible

Online search expands nodes in local order, say, DepthFirst and
HillClimbing have exactly this property

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 66

Online search agents#

def Online-DFS-Agent(problem,s′)
persistent: s′,a, the previous state and action,initially null

result, a table mapping (s , a) to s′,initially empty
untried, a table mapping s to a list of untried actions

unbacktracked, a table mapping s to a list of states never backtracked to

if problem.Is-Goal(s′) then reture stop

if s′ is a new state (not in untried) then untried[s′]← problem.Action(s′)
if s is not null then

result[s,a]← s′

add s to the front of unbacktraked[s′]
if untried[s′] is empty then

if unbacktracked[s′] is empth then return stop

else a← an action b s.t. result[s′, b]=Pop(unbacktracked[s′])
else a←Pop(untried[s′])
s← s′

return a

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 67

Metaheuristic search∗

Metaheuristic: higher-level procedure or heuristic
to find a heuristic for optimization ⇐ local seach
e.g., simulated annealing

Metalevel vs. object-level state space
Each state in a metalevel state space captures the internal state

of a program that is searching in an object-level state space

An agent can learn how to search better
– metalevel learning algorithm can learn from experiences to avoid

exploring unpromising subtrees
– learning is to minimize the total cost of problem solving
especially, learning admissible heuristics from examples, e.g., 8-

puzzle

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 68

Tabu search

Tabu search is a metaheuristic employing local search
resolving stuck in local minimum or plateaus
e.g., Hill-Climbing

Tabu (forbidden) uses memory structures (tabulist) that describe
the visited solutions or user-provided rules

– to discourage the search from coming back to previously-visited
solutions

– depended on certain short-term periods or violated a rule (marked
as “tab”) to avoid a repeat

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 69

Tabu search algorithm#

def Tabu-Search(solution)

persistent: tabulist, a memory structure for states visited, initially empty

solution-best← solution

while not Stopping-Condition

Candidate← null

best.Candidate-List← null

for solution.Candidate in solution.Neighborhood

if not tabulist.Contains(solution.Candidate) and

Fitness(solution.Candidate)> Fitness(best.Candidate)

best.Candidate← solution.Candidate

solution← best.Candidate

if Fitness(best.Candidate) > Fitness(solution-best)

solution-best← best.Candidate

tabuist.Push(best.Candidate)

if tabulist.Size > MaxTabuSize

tabulist.RemoveFirst()

return solution-best

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 70

Searching search∗

Researchers have taken inspiration for search (and optimization) al-
gorithms from a wide variety of fields

– metallurgy (simulated annealing)
– biology (genetic algorithms)
– economics (market-based algorithms)
– entomology (ant colony)
– neurology (neural networks)
– animal behavior (reinforcement learning)
– mountaineering (hill climbing)
– politics (struggle forms), and others

Is there a general problem solver to generality of intelligence?? – NO

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 3 71

